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Abstract

When the spin Hamiltonian is a linear function of the magnetic field intensity the resonance fields can be determined, in principle, by
an eigenfield equation. In this report, we show a new technical approach to the resonance field problem where the eigenfield equation
leads to a dynamic equation or, more specifically, to a first order differential equation of a variable L(x), where x is associated with
the magnetic field h. Such differential equation has the property that: its stationary solution is the eigenfield equation and the spectral
information contained in L(x) is directly related to the resonance spectrum. Such procedure, known as the ‘‘harmonic inversion prob-
lem’’ (HIP), can be solved by the ‘‘filter diagonalization method’’ (FDM) providing sufficient precision and resolution for the spectral
analysis of the dynamic signals. Some examples are shown where the resonance fields are precisely determined in a single procedure,
without the need to solve eigenvalue equations.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

In most continuous-wave (cw) resonance experiments,
also called field-swept experiments, a fixed frequency is
maintained and the applied magnetic field strength is
swept. Such arrangement means that a parameter of the
spin Hamiltonian, the magnetic field in this case, is swept
and for some specific values of this parameter a transition
is observed. Actually, more than one transition can be
simultaneously observed for a given value of the field.
The fact that the time dependent excitation is frequency-
fixed and the Hamiltonian varies during the measurement
process brings up a technical difficult for the establishment
of an appropriate procedure to find the correct values of
the magnetic field, usually called the resonance fields, for
which the transitions may occur.
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The above methodology is particularly employed
in most electron paramagnetic resonance experiments
(EPR), where one can extract magnetic parameters and
then deduce structural and dynamical information about
the paramagnetic molecules or other paramagnetic centers
that are being measured. The numerical simulation of the
EPR spectra is of fundamental importance, and for this
purpose computers have been used extensively for decades.
In this context, there are several software packages that are
available for the simulation of the EPR spectrum. Some of
them are commercial products and others can be obtained
free of charge from the magnetic resonance community.
We are familiar with two of them, the well-known program
QPOWA (dedicated to S = 1/2 spin systems) [1,2] and the
new software package EasySpin [3].

To simulate an EPR spectrum the first difficulty that
arises is the assignment of all the resonance fields of a given
spin Hamiltonian that are compatible with the energy of
the radiating microwave field. There are several known
algorithms that can be used for this purpose but, from
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our knowledge, there is only one published procedure
capable to determine all resonance fields by means of a di-
rect calculation based on first principles [4]. Following this
reference, the resonance field problem can be formulated
and solved in an explicit form, however, as will be ex-
plained later, such approach is computationally too costly,
even in nowadays, because of the n2 dimension of the
matrices involved, with n being the dimension of the spin
Hamiltonian, therefore, its applicability is feasible only
for small systems or on powerful computers. Approxima-
tion methods, usually based on perturbation theories either
by using explicit formulas or by means of numerical treat-
ment, are used extensively [5,6]. Extrapolative methods are
based on frequency-shift perturbation theory, also called
eigenfield perturbation theory [7]. Root-finding algorithms
are based on the Newton–Raphson method and supple-
mented with the Muller method for bisection and quadratic
interpolation [8]. Extrapolation and root-finding methods
are reliable only on a narrow field range. Homotopy meth-
ods make use of a least-squares method [9] or Newton–
Raphson steps combined with Rayleigh quotient iteration
[10]. The method used in the software package EasySpin
implement a new energy level modeling procedure based
on iterative adaptive bisections [3].

Recently, a numerical procedure to compute eigenener-
gies of a possibly large quantum system using solutions
of time-dependent equations, known as ‘‘filter diagonaliza-
tion method’’, or FDM, was introduced [11]. This method
is being extensively used for the spectral analysis of time
signals [12]. Inspired by the conceptual connections be-
tween the FDM and the resonance field problem, we are
here for a re-visit to the eigenfield method introduced in
reference [4].

In this work, we will focus our attention to the eigenfield
method proposed in 1973 [4] and we will propose a new
formulation for the resonance field problem based on a
hypothesis that the eigenfield equation can give birth to a
dynamic equation, more specifically, to a differential equa-
tion on a variable associated with the magnetic field. From
the dynamic solutions of such equation, the resonance
fields can be determined exactly without the need to direct-
ly solve eigenvalue equations. Such approach can only be
accomplished with the FDM, which can provide sufficient
precision and resolution for the spectral analysis of dynam-
ic signals. We hope that by suggesting a new way to calcu-
late resonance fields we are providing some insight into the
essential structure of the problem.

2. Theory, results and discussion

Following an early work [4], an eigenfield equation is
formulated in the Liouville space where the resonance field
problem can be solved in an explicit form. In order to make
our arguments accessible to a wider audience, we will
repeat here—sometimes verbatim—a brief explanation of
the basic assumptions of that work and some of its
practical consequences.
The procedure assumes that the spin Hamiltonian, H, is
a linear function of the applied magnetic field strength h:

Hðh; h;uÞ ¼ Fþ hGðh;uÞ ð1Þ
and

~H ¼ hðsinðhÞ cosðuÞ; sinðhÞ sinðuÞ; cosðhÞÞ ð2Þ
Here, F and G are field-independent Hermitian operators,
where G carries the angular dependence of the magnetic
field vector ~H .

A transition produced by an excitation of frequency X
may occur between two energy levels specified by:

Hjxki ¼ xkjxki
Hjxk0 i ¼ xk0 jxk0 i ¼ ðxk þ XÞjxk0 i; k ¼ 0; . . . ; n� 1

ð3Þ

After some algebraic manipulation of this constraint, the
energy xk can be eliminated from these equations,
resulting:

Hjxkihxk0 j � jxkihxk0 jH ¼ Xjxkihxk0 j ð4Þ
A particular set of basis functions, jaiæ, i = 0, . . .,n � 1,

that forms a complete basis is usually assumed:

jxki ¼
Xn�1

i¼0

aikjaii ð5Þ

Inserting the hypothesis formulated in Eq. (1) into Eq. (4),
the following eigenvalue equation can be deduced (same as
Eq. (5) of Ref. [4]):

ðF � XIÞM �MF ¼ hðMG� GMÞ ð6Þ
In this equation: the resonance field h is the eigenvalue; F,
G, I and M are n · n matrices; M is the eigenmatrix and I is
the identity matrix. In terms of the basis defined in Eq. (5)
the matrix elements of M, F and G are, respectively:

Mij ¼ aika�jk0

F ij ¼ haijFjaji
Gij ¼ haijGjaji

ð7Þ

Eq. (6) admits solutions for only certain values of h and the
corresponding eigenmatrices will give all the information
needed to calculate the associated transition moments.

If the matrix M is rewritten as a column vector, Z, of
dimension n2 · 1, the Eq. (6) can be put in the form of a gen-
eralized eigenvalue equation (same as Eq. (6) of Ref. [4]):

AZ ¼ hBZ ð8Þ

Here, A and B are n2 · n2 matrices and the explicit form of
the elements of A can be calculated from X and F, and
those of B from G. In the original work this result is ex-
plored in a variety of situations but here we will discuss
only some details that are relevant to this report.

First, A and B are Hermitian and, besides, if A is non-
singular the generalized equation can be reduced to a or-
dinary eigenvalue problem:

CZ ¼ ð1=hÞZ ð9Þ
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The matrix C = A�1B is not Hermitian in general. Since
one expect to solve (8) or (9) to obtain real eigenvalues (or
real resonance fields), the positive-definiteness of matrices A

and B must be taken into account. It can be proved that if A

or B is positive-definite the eigenvalues, h (or 1/h), are real,
in which case there is a suitable transformation that brings
matrix C to a Hermitian form; however, if neither A nor B is
positive-definite some of the eigenvalues may be complex
(see, for instance, Ref. [13], pp. 35–36, 337–343). This last
situation connotes non-Hermitian Hamiltonians, therefore,
only the real eigenvalues need to be found. The matrix B,
which is calculated from G, is generally not positive-definite,
but matrix A, which is calculated from X and F, is positive-
definite if and only if all possible zero-field transitions
energies are less than X. In general, each eigenvalue has a
companion eigenvalue of equal magnitude but opposite sign
and, if the eigenvalue is complex, its conjugate is also an
eingenvalue. Therefore, real eigenvalues appear as pairs,
±a, and complex ones as quartets, ±a ± ib, with a and b
positive numbers of comparable magnitudes.

In principle, the above formulation of the resonance
field problem seems to be simple and practical. However,
if one search the experimental EPR data in the literature
will find many examples where the number of spin states
(nuclear and electronic) can be very large. This can be
the EPR case of an electronic spin S = 1/2 surrounded by
one 63Cu and four 14N nuclei (as pointed out in Ref. [3]),
leading to a situation where the 628 states will result in a
generalized eigenvalue problem involving matrices of
dimension 6282 = 394,384. Depending on the double preci-
sion arithmetic of the computing environment, more than
2000 GB of memory will be needed to store one single ma-
trix! Besides, the execution time involved in solving an
eigenvalue problem usually scales as the cube of the matrix
dimension, what means in the present case, with the six-
power of the number of spin states. These are the reasons
why the eigenfield approach to the resonance field problem
has been restricted to deal with small systems and replaced
by approximation methods in the case of large systems.

Since all the restrictions imposed to the eigenfield meth-
od are related with Eqs. (8) or (9), we propose here to move
backwards, looking more carefully to the Eq. (6) which is
defined in the original n · n state space. We have undertak-
en a careful search in the literature and we found no pub-
lished attempts (well succeeded or not) to solve (6) within
the n · n space by means of a numerical procedure. There-
fore, we must assume that this is an unpublished subject.
We expend some time trying to solve (6) by iterative eigen-
value methods but we concluded that the methodology that
will be presented ahead is more conveniently and practical.

Under the light of the FDM we will show that the Eq.
(6) can be solved for several real situations. We are still
not able to apply our methodology to a broader range of
experiments but we consider that there are no fundamental
restrictions to do it. For our technical approach to the
resonance field problem, we are seeking for a dynamic
equation or, more specifically, for a differential equation
for a variable L(x), where x is associated with the magnetic
field h. Such equation should have the property that: (i) it
has a stationary solution given by Eq. (6) and (ii) the
spectral information contained in L(x) should be directly
related to the resonance spectrum I(h).

Such intentions may sound unrealistic at first glance, but
we are convinced that such equation exists. Instead of
investing efforts in first principles calculation one can guess
at least two equations that seems to be appropriated to a
first analysis. First, we propose here the following first or-
der differential equation:

G
d

dx
L� d

dx
L

� �
G ¼ 2pi½ðXI � F ÞLþ LF � ð10Þ

It is easy to show that this equation admits solutions like:

LðxÞ ¼
X

k

Mkeikk x ð11Þ

The x-independent matrices Mk satisfy the eigenvalue
equation:

ðXI � F ÞMk þMkF ¼ kk

2p
ðGMk �MkGÞ ð12Þ

Comparing this result with Eq. (6) one can notice that
both equations are the same if the resonance fields are de-
fined as hk = kk/2p, what means that the variable x has the
unit of the reciprocal of the magnetic field.

We have worked with Eq. (10) in a variety of situations
and concluded that it is an interesting equation and, if one
chooses an appropriate method, it can be solved and its
solutions can indeed reproduce all the resonance fields.
However, Eq. (10) has pathological characteristics that be-
come evident even in very simple problems. To understand
this fact it is convenient to consider the representation
where G is diagonal. Then, the Eq. (10) assumes the form:

ðGi � GjÞ
d

dx
Lij ¼ 2pi XLij þ

X
k

ðF kjLik � F ikLkjÞ
" #

ð13Þ

It follows directly that if any eigenvalue of G is degener-
ated the Eq. (13) will become a system of algebraic-differen-
tial equations. Besides, if the degeneracy of G is raised by
very small amounts, like what happens when the Zeeman
nuclear interaction is included in the EPR Hamiltonian,
the possibility of a stiff set of equations arises. Because of
these diseases we abandoned this approach looking for a
more simple way to achieve our goals.

For a second alternative we choose the following differ-
ential equation:

ðXI � F Þ d

dx
Lþ d

dx
L

� �
F ¼ 2piðGL� LGÞ ð14Þ

It is easy to show that this equation admits solutions like
(11), where Mk is the solution of the x-independent
equation:

kk

2p
½ðXI � F ÞMk þMkF � ¼ GMk �MkG ð15Þ
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Eq. (15) is the same as Eq. (6) if the resonance fields are de-
fined as hk = 2p/kk. We call the attention that, from this re-
sult, the variable x has now the unit of magnetic field. If kk

is named ‘‘frequency’’ the associated resonance field is the
corresponding ‘‘period’’.

The solution matrix, L(x), of Eq. (14) has an important
property. By taking into account that the trace of a com-
mutator is null, it is easy to prove that the trace of L is
independent of x. Besides, the solution of the equation cor-
responding to a negative excitation frequency is automati-
cally included when a positive X is chosen. This can be
understood if Eq. (14) is transposed and conjugated:

ð�XI � F Þ d

dx
LH þ d

dx
LH

� �
F ¼ �2piðGLH � LHGÞ ð16Þ

LH denotes the transpose-conjugate of L. Eq. (16) is iden-
tical to Eq. (14) if one exchanges X fi �X and G fi �G.
Replacing G by �G is the same as keeping G unchanged
and inverting the magnetic field direction (see Eq. (1)).
Therefore, the transpose-conjugate elements of L carry
the corresponding solution for a negative excitation fre-
quency coupled to an inversion of the magnetic field
direction.

Now, our intention is to solve the differential Eq. (14).
As far as we know, such equation has no analytical solu-
tion; therefore, we adopted a numerical procedure. We
have tried several methods and the forth-order explicit
Runge–Kutta method has proved to be convenient for this
case. For the initial condition we take a L-matrix were all
elements are real and equal to 1 or Lij(0) = 1, resulting that
the trace of L will be equal to n.

For the case of a first-order Runge–Kutta, known as the
Euler method, the Eq. (14) is transformed into an algebraic
equation:

ðXI � F ÞLnþ1 þ Lnþ1F ¼ ½ðXI � F ÞLn þ LnF �
þ 2piðGLn � LnGÞDx ð17Þ

In this expression, Dx = xn+1 � xn, Ln+1 = L(xn+1),
Ln = L(xn), with the initial condition L0 = L(0). The exten-
sion for the forth-order case is straightforward. Analyzing
Eq. (17) we notice that it has the general shape:
PX + XQ = R, with P, Q and R known matrices and
X = Ln+1, a matrix to be determined. When matrices P

and Q are upper triangular, this equation is named ‘‘trian-
gular Sylvester equation’’, and can be solved by available
linear algebra software packages. The matrix F can always
be transformed in upper triangular form by Schur factor-
ization, i.e., F = uTuH, where: T is upper triangular, u is
unitary and uH = u�1 is the transpose-conjugate of u. Pro-
vided that the eigenvalues of P (denoted by a) and those of
Q (denoted by b) satisfies: (a + b) „ 0 for all a and b, the
solution is unique. Therefore, the solution will be always
unique—being the only exception the case where the exci-
tation frequency is exactly equal to a zero-field splitting.

The Eq. (14) can be easily solved in the representation in
which F is diagonal. In this case it becomes:
ðX� F i þ F jÞ
d

dx
Lij ¼ 2pi

X
k

ðGikLkj � GkjLikÞ ð18Þ

Provided that (X � Fi + Fj) „ 0 for all i and j, this equation
represents a set of ordinary differential equations.

Before we go any further it will be useful to first analyze
some examples. From now on, we will consider the EPR
case described by the spin Hamiltonian:

H ¼ lB
~H � ��g �~S � lNgN

~H �~I þ~S � ��A �~I þ~S � ��D �~S ð19Þ
~S is the electronic spin,~I is the nuclear spin, lB is the Bohr
magneton, lN is the nuclear magneton, gN is the nuclear
g-factor, ��g is the electronic g-tensor, ��A is the hyperfine cou-
pling tensor and ��D is the zero-field-splitting tensor. The
operators F and G can be trivially obtained in this case.

2.1. Example 1: the diagonal case

A simple but non-trivial example is the isotropic case
S = 1 and I = 1/2, in which the matrices F and G are diag-
onal in the basis: ja0æ = j1,+æ, ja1æ = j1,�æ, ja2æ = j0,+æ,
ja3æ = j0,�æ, ja4æ = j�1,+æ and ja5æ = j�1, �æ. The Hamil-
tonian parameters given by: gzz = 2.0, Azz = 1500 MHz,
D = 900 MHz, E = 0, h = 0 and u = 0, are assumed. The
microwave frequency was set to X = 9500 MHz. After
building the F and G matrices, the differential Eq. (18)
was solved to obtain the x dependency of each element
Lij(x).

In Fig. 1 is shown the dependence of L52 and L04 with x.
As predicted by Eq. (11), each one of these functions can be
fitted by harmonic functions whose period is the associated
resonance field. By drawing the energy level diagram one
can verify this affirmation by confirming that at the speci-
fied field (or the calculated period) a possible transition can
be found. The period (or frequency) associated to different
elements of L can be different from each other but the
important fact is that all of them can be adjusted to the
energy levels splitting and also associated to possible tran-
sitions. This is shown in Table 1 where all obtained transi-
tions are assigned to their corresponding Lij. One can
notice that all possible transitions can be assigned, except
those between hyperfine levels with same ms whose energy
difference is too small for the specified microwave frequency.
In this particular example, the diagonal elements of L are
independent of x and give no additional information.

The given example is simple but very useful as a guide
for the construction of a method capable to find resonance
fields in a general situation. If one looks carefully, will see
that the elements Lij, which are below the diagonal, give all
the information that is necessary to find all the resonance
fields of this example. In fact, all the elements above the
diagonal are associated to the same transitions that appear
in the lower triangle of the matrix, and can be considered as
redundant. The element Lij does not correspond to the
same transition as that of Lji, therefore, the matrix is not
Hermitian. However, for each element above the diagonal
there is one below that corresponds to its conjugate, for



Fig. 1. Matrix elements L(i, j) as a function of magnetic field x (A1,A2) and corresponding energy level transition (B1,B2) for the electronic spin system
S = 1 and I = 1/2 of Example 1. On the left, solid lines correspond to real component and dashed to imaginary. The x-dependence of the sum of the
elements of matrix L, C(x) as defined in the text, is shown in (A3) with the corresponding energy level transitions (B3).

Table 1
Map of the matrix L of Example 1 showing the energy level transition
corresponding to each matrix element Lij = L(i, j)

0: j1,+æ 1: j1,�æ 2: j0,+æ 3: j0,�æ 4: j�1,+æ 5: j�1,�æ

0: Æ1,+j 2–5 3–5 0–5 1–5
1: Æ1,�j 2 – 4 3–4 0–4 1–4
2: Æ0,+j 1–3 0–3 0–2 1–2
3: Æ0,�j 1–2 0–2 0–3 1–3
4: Æ�1,+j 1–4 0–4 3–4 2–4
5: Æ�1,�j 1–5 0–5 3–5 2–5

For example, the element L(1,3) is associated to the transition between
levels 3 and 4; the element L(3,0) is associated to the transition between
levels 1 and 2. Energy levels are numbered in ascending order of energy.
Just for a guide, the basis functions are displayed in the same sequence as
used to build the Hamiltonian matrices. Blank elements means absence of
associated transitions.
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example, L(0, 5) = L(5, 0)* and L(0, 4) = L(5,1)*. This last
fact cannot be generalized, being a simple particularity of
this example.

Considering that our interest is to assign all the reso-
nance fields associated to a given spin Hamiltonian we
can adopt a procedure in which all elements are analyzed
in a single shot, instead of analyze separately each matrix
element. This can be accomplished by defining a correla-
tion function:

CðxÞ ¼
Xn�1

i¼0

Xn�1

j<i

LijðxÞ ð20Þ

The correlation function for the present example is
shown in Fig. 1A3. Indeed, these data contain all the infor-
mation necessary to assign all the resonance fields at once
and this can be verified in the energy diagram of
Fig. 1B3. The important question that arises is how this
can be done precisely. This question is the most delicate
point of our whole discussion and it is related to several as-
pects of the problem, being the most important one con-
cerned to the spectral resolution. One knows, for
example, that hyperfine interactions can lead to line split-
ting, small as 100 ppm (or even smaller).

2.2. The filter diagonalization method (FDM)

As a starting point, we assume that Eq. (20) is equivalent
to a discrete complex signal, cp, whose analytical form is
given by a sum of complex sinusoids:

cp ¼
XM�1

k¼0

dkeipkkd; p ¼ 0; 1; . . . ;N � 1 ð21Þ

The sampling interval or ‘‘dwell time’’, d, and the index
p = 0,1,2, . . .,N�1 define a finite equidistant grid, dk are
the complex amplitudes and kk are the frequencies. Here,
we will consider that only the cases where kk is real have
a physical meaning, although, in general, this assumption
should not be taken as a necessary condition. We will
reconsider this point latter on.

Assuming that the input data size N is large enough, the
objective is to find the best ‘‘line list’’, {dk, kk}, that will fit
the data cp, according to Eq. (21). This problem is known
in the literature as the ‘‘harmonic inversion problem’’, or
HIP, and the interesting fact is that it has the property of
having a linear algebraic solution, no matter the high
non-linearity intrinsic to the HIP. To have the number of
unknowns consistent with the number of equations, and
to ensure a numerically stable formulation of the HIP, it
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is necessary, in principle, to assume N/2 P M. The method
capable to solve this problem is known as the ‘‘filter diag-
onalization method’’, or FDM [11,12].

The resolution of the FDM is to be compared with that
of the discrete Fourier transform, FT. In the framework of
FT, it is well known that the resolution (1/Dk) in the fre-
quency domain is determined by the uncertainty principle,
usually expressed as Dk = 2p/(Nd). Hence, the minimum
detectable frequency separation between adjacent peaks
(Dk) is inversely proportional to the total acquisition time,
Nd. Therefore, the resolution in the resonance field scale
(h = 2p/k) is given by:

Dh P
h2

Nd
ð22Þ

In this context, a definition of the doublet centered at
3986 G (see Table 2) with a resolution of 100 ppm would
need N to be at least as large as 57,000, assuming that
d = 700 G is the largest measurement interval that satisfies
the Nyquist criterion in this case (remembering that the
lowest resonance field listed in Table 2 is at about
1400 G). Therefore, the application of the FT in this case
would be too expensive.

In the context of FDM, the total number of terms, M, in
the sum of Eq. (21), and consequently the number of input
data points, N, are irrelevant because the spectral analysis
is generally performed locally in the frequency domain. In
this case, it is more appropriate to think in terms of the
density of information in the frequency domain, i.e. the lo-
cal density of peaks, q(k), should be consistent with the
information content of the signal cp of size N:

Nd
4p

P qðkÞ ð23Þ

If this condition is not satisfied, one can only obtain a ‘‘low
resolution’’ result in which the ‘‘uncertainty’’ will be due to
Table 2
Resonant fields and corresponding transitions calculated for the Example
1

Transition Field-EE (Gauss) Field-DE (Gauss) Error (ppm)

1 0–5 1428.9546 1428.9562 0.932
2 0–4 1695.5941 1695.5950 0.559
3 1–5 1698.1751 1698.1760 0.555
4 1–4 1964.8126 1964.8132 0.359
5 2–5 2804.3234 2804.3236 0.0618
6 3–5 2808.5954 2808.5956 0.0614
7 2–4 3335.1086 3335.1087 0.0368
8 3–4 3340.1814 3340.1815 0.0366
9 0–3 3442.1174 3442.1175 0.0335

10 0–2 3447.3530 3447.3531 0.0333
11 1–3 3983.2109 3983.2110 0.0216
12 1–2 3989.2787 3989.2788 0.0215

Resonant fields calculated from the eigenvalue equation (Eq. (8)) are
denoted by Field-EE and those calculated from the differential equation
(Eq. (18)) by Field-DE. The FDM was used to fit the C(x) data to Eq. (21).
The indicated errors correspond to the deviation, in ppm, between the
microwave energy and levels separation at each specified resonance field
calculated from Eq. (18).
the non-unique representation of the time signal in terms of
the frequencies kk and amplitudes dk. Otherwise, if the con-
dition is satisfied and the signal cp of length N has the form
of Eq. (21), the FDM will provide ‘‘infinite’’ resolution. In
other words, the sampling interval necessary for FDM is
proportional to the inverse of the local average line spac-
ing, while for FT the required interval is proportional to
the inverse of the local minimum spacing, which can be
much longer than the first.

For the case of the plot shown in Fig. 1, were N = 1024
and d = 195.5 G (note that only part of the whole data is
shown), the FDM was employed to fit the cp data and
the results obtained for the resonance fields are listed in Ta-
ble 2. One can observe that the difference between the
microwave energy and energy levels separation at each
specified resonance field is about 1 ppm, in the worst case,
which validates the assumption that the FDM is the appro-
priate method to solve this problem.

Besides the resolution enhancement, the FDM has
several important advantages with respect to FT and
other fitting procedures. First of all, one must consider
that the maximum number of transitions is given by
(n2 � n)/2. However, the number of possible transitions
for a given X may not be known a priori. In our Exam-
ple 1, (n2 � n)/2 = 15, but the number of existing transi-
tions is 12. This means that the number of terms in Eq.
(21), or M, is unknown, a priori. This fact does not rep-
resent a difficulty for the FDM but will impose serious
limitations to other common fitting procedures. Another
particularity of the FDM is that it ends up with a ‘‘line
list’’ with all values of dk and kk that can be available for
posterior manipulations. On the contrary, to obtain a
line list from the FT spectrum may not be an easy task,
because FT is a transformation and not a fitting
procedure.

2.3. Example 2: the non-diagonal case

As a second example we will treat an anisotropic case
with S = 2 and I = 1, in which the matrices F and G are
not diagonal in the basis jmS,mIæ, with mS = 2,1,0,�1,�2
and mI = 1,0,�1. The total number of states is 15, and
the Hamiltonian parameters are given by: gxx = 1.9,
gyy = 2.1, gzz = 2., Axx = 300 MHz, Ayy = 500 MHz, Azz =
1500 MHz, D = 1000 MHz, E = 400 MHz, h = 35� and
u = 55�. The microwave frequency was set to
X = 9500 MHz. After building the F and G matrices, the
differential Eq. (18) was solved to obtain the x dependency
of C(x) in the range x = 0 to x = 500,000 G with an incre-
ment Dx � 6.2 G. To increase resolution, the FDM was ap-
plied twice with two sets of 2048 data points each,
extracted from the whole evolution, being the first one with
d � 290 G and the second with d � 24 G. Since the lowest
and highest resonance fields of this example are, respective-
ly, �92 and �4887 G, the first set favors the determination
of low frequencies (high field) components while the second
improves high frequencies (low field).



Fig. 2. Energy level transitions diagram for the electronic spin system
S = 2 and I = 1 of Example 2. Fig. 3. Energy level transitions diagram for the electronic spin system

S = 1 and I = 1/2 of Example 3. The zero-field transition is not shown.
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The results of this theoretical example are shown in
Fig. 2. The x dependency of C(x) is very messy and is
not shown but its decomposition by FDM recovers almost
exactly all the 90 resonance fields allowed for this case. The
error between the microwave energy and energy levels sep-
aration at each specified resonance field is in the worst case
less than 10 ppm.

2.4. Example 3: the singular case

When the microwave frequency is exactly equal to a zero
field splitting one or more coefficients, (X � Fi + Fj), on the
left side of Eq. (18) will be null, then the equation will rep-
resents a system of algebraic-differential equations, which
cannot be solved by the simple procedure that we have
adopted before. Instead of using more complicated meth-
ods capable to solve such kind of equations, we adopted
here a more simple procedure, which is based on a valid
trick that consists in modulate the microwave frequency.

For the first Runge–Kutta step we take a microwave fre-
quency, X1, that is slightly above the desired frequency, X,
such that X1 = X + D1. For X � 9500 MHz, a good choice
can be D1 in the range 50–100 MHz. For the second step,
the frequency is changed to X2 = X � D2 and the value of
D2 is calculated for each one of the equations of the set
(18) according to the prescription:

1

X1�F iþF j
þ 1

X2�F iþF j
¼ 2

X�F iþF j
; if X�F iþF j 6¼ 0

X1¼XþD1 and X2¼X�D1; if X�F iþF j¼ 0

ð24Þ
Then, the same procedure is repeated for all steps,
i.e., applying X1 for odd steps and X2 for even steps. The
result of this manipulation is excellent; the method works
well in the case where (X � Fi + Fj) = 0 for some compo-
nents (i, j) and also when (X � Fi + Fj) is not null for all
components.

To demonstrate the utility of this method we will contin-
ue to use the Example 1, slightly modified by changing
the value of the zero-field-splitting parameter to D =
8750 MHz. For this situation there will be a zero-field tran-
sition. The solution of Eq. (18), taking D1 = 100 MHz, is
stable and the application of the FDM to the correlation
function C(x) gives the resonance fields shown in Fig. 3.
The 10 transitions that exists for h > 0 were correctly calcu-
lated and the difference between the microwave energy and
energy levels separation at each specified resonance field is
again of the order of few ppm, in the worst case. Of course,
the transitions that exists for h = 0 cannot be calculated
from this method but they can be easily determined a
priori.

To be fair, we must explain that the above method
worked well for the chosen example but it cannot solve
all experimental situations in general. The reason why it
could solve this example can be understood in the follow-
ing way. If one uses the eigenvalue equation, Eqs. (8) or
(9), to find the resonance fields of this particular example
will encounter that all the eigenvalues are real in the two
situations: X = X1 and X = X2. This is not a general result
because, in general, complex eigenvalues will be found
when (X � Fi + Fj) is negative for some pairs (i, j). As will
be discussed below, complex eigenvalues represent a prob-
lem that we cannot solve yet.

2.5. Limitations of the proposed method

Here, we will discuss about one serious limitation of the
methodology here proposed with the objective to determine
all the resonance fields of any physical system described by
the Hamiltonian of Eq. (19).

In our early discussion concerning the generalized eigen-
value Eq. (8), we emphasized that if the matrix A is not po-
sitive-definite some of the eigenvalues may result complex.
This is the situation where (X � Fi + Fj) is negative for some
pairs (i, j). Although the procedure we are proposing is dif-
ferent from the eigenvalue method, one can observe that the
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Eq. (18), used throughout this work, will become equivalent
to Eq. (8) if the matrix L is written as a column vector.
Therefore, the same restrictions that were mentioned with
respect to the eigenvalue method also apply here.

When some of the eigenvalues are complex, the general
solution for L(x), given by Eq. (11), will represents complex
sinusoids with amplitudes that may decay or grow as x

increases. The differential Eq. (18) can still be solved in this sit-
uation, since the problem still remains well conditioned. Also,
after C(x) being correctly calculated there will be no problem
in applying the FDM, because it is a tool specially designed to
deal with such more general situation. Therefore, in principle,
when (X � Fi + Fj) is negative the correlation function C(x)
can still be determined and the FDM should be capable to find
all the resonance fields, including the complex ones.

The problem that arises when (X � Fi + Fj) is negative is
purely technical. The fact is that the exponentially growing
functions, of the type ecx with c positive, have a character-
istic time rate, c, of the same order of magnitude of the cor-
responding frequency of the harmonic functions that they
modulate. This means that after few Runge–Kutta steps
these complex eigenvalues will dominate the evolution of
L(x) and every element Lij(x) will grow so rapidly in ampli-
tude that the accuracy needed to determine the weak fea-
tures represented by pure harmonic functions is degraded.

We have tried many alternative methods to solve the Eq.
(18) under these circumstances but we could not reach a final
conclusion. It is apparent that the inclusion of an appropri-
ate damping term could be able to control the growing rate
of the undesired solutions without spoiling the desired ones.
However, we are still working on this subject.

3. Conclusions

The new method described herein has the objective to
determine the resonance fields of a given spin Hamiltonian.
Its formulation is based on one hypothesis, i.e., that the Eq.
(14) is valid. Then, the method is capable to calculate pre-
cisely, in a single shot, all the resonance fields without the
need to solve eigenvalue equations or sophisticated algo-
rithms. We have shown here just few examples, but we have
worked on many other examples, chosen for testing pur-
poses, which are not shown in here. In all cases the method
was able to determine all the resonance fields with a preci-
sion of the order of few ppm.

Because of a technical reason, the method cannot be ap-
plied when the microwave energy does not cover the overall
zero-field splitting but, at least for the remaining cases, it
has the potential to become a routine method since it is sta-
ble, robust and does not require more user effort than other
methods. Since we were more concerned to the precision of
the method, we have not applied sufficient efforts to opti-
mize our software routines, so far. Therefore, we have no
means to compare the efficiency of our method with that
of other available software packages that were built for
the same purposes.

We expect that this new tool will enhance the versatility
of the EPR spectra simulation methods.
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